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Abstract

A systematic approach for the free vibration analysis of a rotating Timoshenko shaft system subjected to
axial forces is presented in this paper[ The system has multiple point discontinuities such as elastic supports\
rotor masses\ and cross!sectional changes[ Wave re~ection and transmission matrices are employed to
characterize the wave motions between the sub!spans of the shaft system[ These matrices are combined with
the _eld transfer matrices expressed in wave forms to obtain the characteristic equation in a straightforward
manner[ The solutions are exact since e}ects of attenuating wave components are included in the formulation[
The wave propagation!based matrix algebra leads to recursive algorithms which are suitable for computer
coding[ Three examples are presented to illustrate the numerical procedure[ Þ 0888 Elsevier Science Ltd[
All rights reserved[

Nomenclature

As area of shaft cross!section ðm1Ł
a9 diameter of shaft cross!section ðmŁ
C\ D generalized coordinates of wave components
C incident or re~ected wave vector
c9 bar velocity ðm:secŁ
cs shear velocity ðm:secŁ
D transmitted wave vector
E\ G Young|s and shear modulus ðN:m1Ł\ respectively
i complex number\ z−0
I lateral moment of inertial of shaft ðm3Ł
JM "Jm# mass moment of inertial of a rotor mass ðkg m3Ł
K Timoshenko shear coe.cient
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KR "kr# rotational spring "N!m:radŁ
KT "kt# translational spring ðN:mŁ
Li "li# length of shaft ðmŁ\ subscript i denotes span number
M "m# mass of rotor ðkgŁ
P axial force ðNŁ
R generalized re~ection matrix
rij\ tij re~ection and transmission coe.cients\ respectively[ i � 0 positive travelling wave^ i � 1

negative travelling wave^ Cases II and IV\ j � 0 propagating wave\ j � 1 attenuating
wave[ Case I\ j � 0\ 1 for propagating waves

T _eld transfer matrix
U "u# transverse displacement in the complex plane ðmŁ
w wave vector
X!Y!Z"x!y!z# reference frame coordinates ðmŁ

Greek symbols
a "K = G#:E
b rotation parameter\ see eqn "3#
o P:"E = A#\ axial strain
o¼ non!dimensional axial load parameter\ see eqn "00#
G	\ g½ "G\ g# wavenumber ðm−0Ł
r mass density of shaft ðkg:m2Ł
s diameter ratio between two shaft elements
v½ \ "v# frequency ðrad:sŁ
V rotation speed of shaft ðrad:sŁ
c bending angle of the shaft cross!section ðradŁ
j local coordinate for wave re~ection and transmission at discontinuities

Subscript
l\ r the left and right side of a discontinuity\ respectively

Superscript
−\ ¦ negative and positive travelling waves\ respectively\ when used in C\ D\ and w[ Otherwise

denotes quantities on the left and right side of a discontinuity\ respectively[
Note] Symbols in parenthesis are the corresponding non!dimensional parameters[

0[ Introduction

Rotating ~exible shafts are one of the most commonly employed mechanical elements for
power transmission\ high speed machining\ and precision manufacturing[ In each application\ the
reliability of the machinery depends on the stability of the rotating shaft elements and the use of
accurate models for analysis especially for higher modes which are responsible for fatigue failure
"Tsai and Wang\ 0885#[ Three beam theories\ the EulerÐBernouli\ Rayleigh and Timoshenko
models\ are commonly used to describe the transverse vibrations of rotating ~exible shafts[ The
Timoshenko model gives accurate predictions of the natural frequencies and vibration modes for
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Fig[ 0[ Schematic of a rotating shaft system with multiple discontinuities and general boundary conditions[

stubby beams "Huang\ 0850#[ In many modern applications of power transmission\ for example\
in automotive crankshaft mechanism\ the rotating shaft span contains various discontinuities such
as bearing supports\ rotors\ geometric changes in cross!sections\ and non!classical boundary
conditions "see Fig[ 0#[ The general approach to the vibration problem is to consider the shaft as
a system of multiple sub!spans and discontinuities[ These spans usually have small slenderness
ratios "length:diameter# and hence the Timoshenko beam theory should be used in the analysis[

The vibration of a rotating Timoshenko shaft has been studied by many and most papers are
concerned with the development of solution techniques for evaluating the response and stability
of di}erent rotating shaft models "Zu and Han\ 0881^ Han and Zu\ 0881^ Katz et al[\ 0877^ Lee et
al[\ 0877#[ Tan and Kuang "0884# obtained exact\ closed!form solutions for the free and forced
responses of a stepped\ rotating Timoshenko shaft by the distributed transfer function method
and a generalized displacement formulation[ The transfer function methodology was also applied
to the analysis of non!uniform continuous systems by Yang and Fang "0883#[ Popplewell and
Chang "0886# studied the stepped\ spinning Timoshenko beam by the Galerkin method with
polynomial based generalized force mode functions[

A commonly employed approach to study the vibrations of systems with multiple spans is the
transfer matrix method which is well documented in the classical papers of Holzer "0810# and
Myklestad "0833#\ and by Pestel and Leckie "0852#[ Due to its advantage of conciseness in the
formulation that results from the use of matrix algebra\ the transfer matrix method has been
applied extensively to the analysis of complex structures and aircraft panels "Lin and Donaldson\
0858#[ Lee et al[ "0880# examined the steady!state response of ~exible rotor!bearing systems by
representing the transfer matrix of the shaft as a continuous system[

The vibrations of elastic structures and the acoustics in ~uids can be described in terms of waves
propagating and attenuating in waveguides "Gra}\ 0864^ Fahy\ 0874#[ One advantage of using the
wave propagation method to study the vibrations of structures is its ability to provide a compact
and systematic methodology to analyze complex structures such as aircraft panels with periodic
supports and beams on multiple supports "Yong\ 0880#[ Employing the concept of wave re~ection
and transmission\ Mace "0873# obtained the characteristic equations of EulerÐBernoulli beam
models including both propagating and evanescent waves[ By the phase closure principle "also
called the wave!train closure principle "Cremer et al[\ 0862##\ Mead "0883# calculated the natural
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frequencies of EulerÐBernoulli beams[ This principle states that if the phase di}erence between
incident and re~ected waves is an integer multiple of 1p\ then the waves propagate at a natural
frequency and their motions constitute a vibration mode[ Despite the usefulness of the wave
propagation technique\ it has seldom been applied to study the vibration of rotating ~exible shafts\
except by Argento and Scott "0884# on an in_nitely long rotating Timoshenko beam\ and by Kang
and Tan "0887#\ and Tan and Kang "0887# on the wave characteristic of an axially loaded shaft[

The equations of motion of an axially loaded\ rotating Timoshenko shaft was derived by a _nite
strain theory "Choi et al[\ 0881#[ Employing the linearized equations of this model\ Kang and Tan
"0887# showed that the presence of the axial load and the rotation speed complicates the wave
motions and in general there are three types of wave motions depending on the frequency and
system parameters[ Thus\ for an axially loaded\ rotating shaft with multiple discontinuities\ there
may be more than one type of wave motion in the elastic medium[ It becomes di.cult for many
classical methods\ such as the transfer matrix method\ to be applied in a straightforward manner[
For example\ the _eld transfer matrix has di}erent forms depending on whether the axial load is
tension or compression "Subrahmanyam and Garg\ 0886# and on the rotation speed[ The transfer
matrix method may also lead to computations of matrices of large orders if the structural system
has di}erent types of discontinuities "Yong\ 0880#[ A systematic computation algorithm\ capable
of treating the combined e}ects of axial force\ rotation speed and shear in a uni_ed manner\ is
thus needed for the vibration analysis of rotating Timoshenko shaft systems[

The purpose of this paper is to present such an algorithm by combining the wave propagation
technique and the compactness of the transfer matrix algebra[ The method may be viewed as a
matrix version of the wave!train closure principle[ This paper is organized as follows[ The vibration
model and wave characteristics are summarized in Section 1[ Wave re~ection and transmission
matrices and the wave!train closure principle are shown in Sections 2 and 3\ respectively[ Numerical
examples are presented in Section 4\ and conclusions are given in Section 5[

1[ Problem formulation and harmonic wave solutions

Figure 0 shows a schematic of a shaft rotating about its longitudinal axis at a constant speed V
and subject to axial load P[ The shaft is elastically constrained at intermediate locations and the
boundaries\ and rigid rotor disks are mounted on it[ For each sub!span\ it is assumed that the
material and geometric properties are uniform[ Moreover\ damping in the system is neglected\
though the solution approach is still applicable for damped systems[ The shaft model incudes the
e}ects of rotary inertia\ shear deformation\ and axial deformation due to the axial load[ Using a
_nite strain theory\ the linearized equations governing the transverse and rotational motions "due
to bending# of an in_nitesimal element of the rotating shaft are given in the following non!
dimensional form "Choi et al[\ 0881#

13u

1z3
−"0¦a#

13u

1z1 1t1
¦1ib

12u

1z1 1t
−1ib

12u

1t2
¦a

13u

1t3
−05o 00¦o−

o

a1
11u

1z1

¦05a"0¦o# 00¦o−
o

a1
11u

1t1
� 9\ "0#



C[A[ Tan\ B[ Kan` : International Journal of Solids and Structures 25 "0888# 3920Ð3938 3924

13c

1z3
−"0¦a#

13c

1z1 1t1
¦1ib

12c

1z11t
−1ib

12c

1t2
¦a

13c

1t3
−05o 00¦o−

o

a1
11c

1z1

¦05a"0¦o# 00¦o−
o

a1
11c

1t1
� 9\ "1#

where the complex displacement u and rotation c satisfy the kinematic relationship
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and the following non!dimensional variables and parameters have been introduced[

u �
U
a9

\ z �
Z
a9

\ t �
T
T9

\ T9 �X
ra1

9

KG
^ a �

KG
E

\ b �
ra1

9

ET9

V\ o �
P

EAs

[ "3#

A list of notations is given in the Nomenclature[
Development of the wave solutions for the shaft model has been discussed in a previous work

"Kang and Tan\ 0887#[ Here\ only equations relevant to the current study are presented[ Assume
harmonic wave solutions to eqns "0# and "1# as

u"z\ t# � Cu ei"gz¦vt#\ c"z\ t# � Cc ei"gz¦vt#\ "4a\b#

where g and v are non!dimensional wavenumber and frequency de_ned as

g � g½a9\ v �
v½ a9

cs 0cs �X
KG
r

is the shear velocity1[ "5#

Substituting the wave solution "4a# into eqn "0# leads to the frequency equation

av3−1bv2−ð"0¦a#g1¦05a"0¦o#o¼Łv1¦1bg1v¦g1 ðg1¦05oo¼Ł � 9\ "6#

or in terms of wavenumber g\

g3−Ag1¦B � 9\ "7#

where\

A �"0¦a#v1−1bv−05oo¼\ "8#

B � v1 ðav1−1bv−05a"0¦o#o¼Ł\ "09#

o¼ � 0¦o−
o

a
[ "00#

The four roots of eqn "7# are

g � 2
0

z1
"A2zA1−3B#0:1[ "01#
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For a × 9 and =o= ³ 0\ it can be shown that the discriminant A1−3B is semi!positive de_nite for
most engineering applications[ Employing this fact and assuming that v is real\ it is readily shown
that g is either real or imaginary[ The general wave solutions can then be classi_ed into four cases
as follows[

Case I "A × 9 and B × 9^ all roots of eqn "7# are real#

u"z\ t# �"C¦
0 e−ig0z¦C−

0 eig0z¦C¦
1 e−ig1z¦C−

1 eig1z# eivt\ "02a#

c"z\ t# �"h0C
¦
0 e−ig0z−h0C

−
0 eig0z¦h1C

¦
1 e−ig1z−h1C

−
1 eig1z# eivt\ "02b#

where\ by eqn "2#\ h0 and h1 are

h0 �
g1

0−v1

g0o¼
\ h1 �

g1
1−v1

g1o¼
[ "02c#

Case II "A × 9 and B ³ 9^ two roots of eqn "7# are real and two are imaginary#

u"z# �"C¦
0 e−iG0z¦C−

0 eiG0z¦C¦
1 e−G1z¦C−

1 eG1z# eivt\ "03a#

c"z# �"h0C
¦
0 e−iG0z−h0C

−
0 eiG0z¦h1C

¦
1 e−G1z−h1 C−

1 eG1z# eivt\ "03b#

where\

h0 �
G1

0−v1

G0o¼
\ h1 �

G1
1¦v1

iG1o¼
[ "03c#

Case III "A ³ 9 and B × 9^ all roots of eqn "7# are imaginary#

u"z\ t# � C¦
0 e−g0z¦C−

0 eg0z¦C¦
1 e−g1z¦C−

1 eg1z# eivt\ "04a#

c"z\ t# � h0C
¦
0 e−g0z−h0C

−
0 eg0z¦h1C

¦
1 e−g1z−h1C

−
1 eg1z# eivt "04b#

where\

h0 �
g1

0¦v1

ig0o¼
\ h1 �

g1
1¦v1

ig1o¼
[ "04c#

Case IV "A ³ 9 and B ³ 9^ two roots of eqn "7# are real and two are imaginary#

u"z\ t# �"C¦
0 e−G0z¦C−

0 eG0z¦C¦
1 e−iG1z¦C−

1 eiG1z# eivt\ "05a#

c"z\ t# �"h0C
¦
0 e−G0z−h0C

−
0 eG0z¦h1C

¦
1 e−iG1z−h1C

−
1 eiG1z# eivt\ "05b#

where\

h0 �
G1

0¦v1

iG0o¼
\ h1 �

G1
1−v1

G1o¼
[ "05c#

In above equations\ the following wavenumbers have been de_ned

g0 �
0

z1
"=A=¦zA1−3=B=#0:1\ g1 �

0

z1
"=A=−zA1−3=B=#0:1\ "06a#
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Fig[ 1[ Frequency spaces demarcated by the non!zero cuto} frequencies "B � 9# and A � 9\ as a function of b with
o � −9[94 "compression#^ A � "*#\ B � 9 "! ! !#[

G0 �
0

z1
"zA1¦3=B=¦=A=#0:1\ G1 �

0

z1
"zA1¦3=B=−=A=#0:1[ "06b#

Note that the coe.cients C¦
i and C−

i denote the transverse amplitudes of positive!traveling and
negative!traveling waves from the origin of disturbance along the shaft\ respectively[ Among these
four wave solutions\ the solution of Case III does not exist in the real frequency space since none
of the wave components can propagate along the shaft\ as seen in eqns "04a\b#[ Therefore\ this
type of wave solution is of no interest in vibration problems[ Note that\ for the Timoshenko model\
there exists a non!zero cuto} frequency above which all wave components propagate[ In this
frequency range\ the motion is governed by the solution of Cases I[ Below the cuto} frequency\
two wave components propagate and the wave motions are governed by the solution of Case II or
IV depending on the system parameters[ Figure 1 shows the frequency spaces demarcated by the
non!zero cuto} frequencies "B � 9# and A � 9\ as a function of the rotation speed with o � −9[94
"compression#[ In each region\ one of the three wave solutions applies[ It is important to note that\
for this amount of compression and at su.ciently large b\ the form of the wave solution changes
from Case IV to Case II[ This kind of transition depends strongly on the axial load[ In summary\
because of the multiple wave solutions\ one must note that di}erent vibration modes may be
associated with di}erent types of wave solutions[

2[ Wave re~ection and transmission matrices

When a wave is incident upon a discontinuity such as an intermediate support\ a di}erent
waveguide\ or a boundary\ it is re~ected and:or transmitted depending on the properties of the
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Fig[ 2[ Wave re~ection and transmission at a kinetic discontinuity[

discontinuity[ In general\ a wave component either propagates or attenuates "evanescent or near!
_eld#[ However\ for a Timoshenko model\ there exists a _nite cuto} frequency above which all
wave components propagate due to the e}ects of the shear deformations[ When the distances
between discontinuities are relatively small\ attenuating components play an important role in the
wave motions by contributing signi_cant amounts of energy to the total power ~ow "Gra}\ 0864#[
In this section\ wave re~ection and transmission matrices for the rotating shaft model are obtained
for various kinds of discontinuities[ These matrices are needed for the wave!train closure principle[

2[0[ Wave re~ection and transmission at a kinetic discontinuity

Consider a rotating Timoshenko shaft element supported at a local coordinate j � 9^ see Fig[
2[ The support consists of linear transverse and rotational springs\ and a rigid rotor mass which
typically represents a gear transmitting a torque[ By eqns "02#Ð"05#\ group the wave components
into 1×0 vectors of positive!traveling waves C¦ and negative!traveling waves C−\

C¦ � 6
C¦

0

C¦
1 7\ C− � 6

C−
0

C−
1 7[ "07a\b#

When a set of positive!traveling waves C¦ is incident upon the support\ it gives rise to a set of
re~ected waves C− and transmitted waves D¦[ These waves are related by

C− � rC¦\ D¦ � tC¦ "08a\b#

where r and t are the 1×1 re~ection and transmission matrices\ respectively[
Applying the displacement continuity and force and moment balance at the support\ r and t can

be obtained[ Note that since there are four "practically three# di}erent wave motions in our rotating
Timoshenko shaft model\ a di}erent set of r and t for each Case needs to be derived[ In this paper\
only the expressions of r and t for Case II are presented[ Similar procedures can be applied to
derive the re~ection and transmission matrices for other cases[ It should be noted that Cases II
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and IV govern the wave motions in the vibration frequency ranges encountered in most engineering
problems[ Introduce the following non!dimensional parameters

kt �
Kta9

KAG
\ kr �

Kra9

EI
\ m �

M
rAa9

\ and Jm �
JMc1

s

EI
[ "19#

Denote rII and tII as the re~ection and transmission matrices for Case II of the wave incident upon
the support depicted in Fig[ 2\ respectively\

rII �
0
D $

r00 r01

r10 r11%\ tII �
0
D $

t00 t01

t10 t11%[ "10a\b#

The elements of rII and tII can be derived as

D � "h0"1G0−iHm#¦ih1"1G0¦Hm##"1h0G1−1ih1G0¦Hs "h0−h1##\

r00 � −1h0h1G0"Hm−Hs#¦ih1
1Hs "1G1¦Hm#−ih1

0Hm"1G1¦Hs#\

r01 � −1h1 ðih0"G1Hm¦Hs "iG0¦Hm##¦h1"G0Hm−iHs "G1¦Hm##Ł\

r10 � 1h0 ðih0"G1Hm¦Hs "iG0¦Hm##¦h1"G0Hm−iHs "G1¦Hm##Ł\

r11 � 1ih0h1G1"Hm−Hs#¦h1
1Hm"1G0−iHs#¦h1

0Hs "iHm−1G0#\

t00 � 1h1
1G0"1G1¦Hm#¦1h1

0G0"1G1¦Hs#−1ih0h1"1G1
0−G1"1G1¦Hm¦Hs##\

t01 � 1h1"h1G0Hm¦ih0G1Hm¦h0G0Hs¦ih1G1Hs#\

t10 � −1h0"h1G0Hm¦ih0G1Hm¦h0G0Hs¦ih1G1Hs#\

t11 � 1h1
0G1"1G0−iHm#¦1h1

1G1"1G0−iHs#¦1h0h1"1iG1
1−1iG1

0−G0"Hm¦Hs##\

Hm � kr−Jmv1\ Hs � kt−mv1[ "11#

rIV and tIV for Case IV can be obtained by replacing iG0 and G1 in the above expressions with G0

and iG1\ respectively[

2[1[ Wave re~ection and transmission at a cross!sectional chan`e

When a wave travels across a discontinuity due to a change in the cross!section or material
properties\ its wavelength is changed[ Consider the shaft model with two elements of di}erent
diameters joined at j � 9 as shown in Fig[ 3[ For simplicity\ assume that the material properties
r\ E and G of both shaft elements are the same[ The derivation procedure is the same even if the
material properties are di}erent[ Denote the subscripts l and r as j � 9− and j � 9¦\ respectively[
The wavenumbers\ A and B at the right side of the discontinuity are

g0r �
0

z1
"Ar¦zA1

r −3Br#0:1\ g1r �
0

z1
"Ar−zA1

r −3Br#0:1\ "12a#
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Fig[ 3[ Wave re~ection and transmission at a cross!sectional change[

G0r �
0

z1
"zA1

r ¦3=Br =¦=A1
r =#0:1\ G1r �

0

z1
"zA1

r ¦3=Br =−=A1
r =#0:1\ "12b#

where

Ar �"0¦a#v1−1bv−
05

s1
oro¼r\ "13#

Br � v1 $av1−1bv−
05

s1
a"0¦or#o¼r%\ "14#

o¼r � 0¦or−
or

a
\ or �

o

s1
\ s �

ar

al

"diameter ratio#[ "15#

Corresponding quantities at the left side of the discontinuity have the same expressions but with
s � 0[

It is possible that a wave propagating in j � 9− becomes attenuating after crossing the dis!
continuity[ The wave motions on both sides of the discontinuity can be di}erent depending on
the frequencies and system parameters[ Therefore\ for a rotating Timoshenko shaft\ there are
mathematically nine possible combinations of wave motions to be considered since each side of
the discontinuity has three wave motions\ Cases I\ II\ and IV depending on the values of A and B[
To illustrate the formulation of the wave re~ection and transmission matrices\ suppose the wave
motions on the left and right sides of the discontinuity are of Case II and Case I\ respectively[
Then\ imposing the displacement continuity and force and moment balance at the discontinuity
leads to the following matrix equations[

$
0 0

h0l h1l%C¦¦$
0 0

−h0l h1l% rIIÐIC
¦ � $

0 0

h0r h1r% tIIÐIC
¦\ "16a#
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$
iG0lh0l −G1lh1l

i"h0l−G0l# ih1l−G1l%C¦¦$
−iG0lh0l −G1lh1l

i"G0l−h0l# "G1l−ih1l#% rIIÐIC
¦

� $
−is3g0rh0r −is3g1rh1r

is1"h0r−g0r# is1"h1r−g1r#% tIIÐIC
¦\ "16b#

where\ the subscripts IIÐI of r and t denote a transition of the wave solutions in that order[ Note
that hil in eqns "16a\b# are given by eqn "03c# and hir for each Case are

h0r �
g1

0r−v1

g0ro¼r

\ h1r �
g1

1r−v1

g1ro¼r

for Case I\ "17#

h0r �
G1

0r−v1

G0ro¼r

\ h1r �
G1

1r¦v1

iG1ro¼r

for Case II\ "18#

h0r �
G1

0r¦v1

iG0ro¼r

\ h1r �
G1

1r−v1

G1ro¼r

for Case IV "29#

where gir and Gir are given by eqns "12a\b#[ The explicit expressions for rIIÐI and tIIÐI are not
presented in this paper due to space limitation[ However\ they can be obtained from the solutions
of eqns "16a\b# in either closed!form or numerically[ The re~ection and transmission matrices for
other cases such as rIÐII\ tIÐII\ rIVÐII\ and tIVÐII can be obtained in a similar manner[

2[2[ Wave refection at a boundary

When a wave is incident at a boundary\ it is only re~ected[ Consider an arbitrary boundary
conditions with translational and rotational springs\ and a rigid rotor mass " for a right boundary\
see Fig[ 2 without the shaft element on the right side#[ By imposing the force and moment balance
at the boundary\ the re~ection matrix at the boundary can be derived for each Case[ For example\
rII can be expressed as

rII � $
h0"iG0¦Hm# h1"G1¦Hm#

i"G0−h0#¦Hs "G1−ih1#¦Hs%
−0

$
−h0"iG0−Hm# −h1"G1−Hm#

i"G0−h0#−Hs "G1−ih1#−Hs%\ "20#

where\ Hm and Hs are given by eqn "11#[ Note that rIV can be obtained by replacing iG0 and G1 in
the above expression with G0 and iG1\ respectively[ rI can be obtained in a similar manner by
applying the wave solution of Case I[

3[ Free vibration analysis

The re~ection and transmission matrices of waves incident upon point discontinuities can be
combined with the transfer matrix method to analyze the free vibration of the rotating shaft system
shown in Fig[ 0[ The basic idea of this technique is known as the wave!train or phase closure
principle which has been presented for non!rotating EulerÐBernoulli beams "Mead\ 0883^ Mace\
0873^ Cremer et al[\ 0862#[ However\ due to the complexity of wave motions in the Timoshenko
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Fig[ 4[ A rotating shaft model with multi!discontinuities and general boundary conditions[

shaft model "such as multiple wave solutions and the frequency dependence of the wave re~ection
and transmission at a cross!sectional change#\ it is important to apply the proper wave re~ection
and transmission matrices consistent with the values of A and B on both sides of the discontinuity[
In this section\ we apply the wave!train closure principle to the rotating Timoshenko shaft system[

Consider a rotating Timoshenko shaft with n discontinuities and general boundaries as shown
in Fig[ 4[ De_ne Ri as a generalized re~ection matrix which relates the amplitudes of negative and
positive traveling waves at station "discontinuity# i and Ti as the _eld transfer matrix between
stations i and i¦0 which relates the wave amplitudes by

w¦"z9¦z# � Tw¦"z9# or w−"z9¦z# � T−0w−"z9#\ "21#

where\

T � $
e−ig0z 9

9 e−ig1z% for Case I\ "22#

T � $
e−iG0z 9

9 e−G1z% for Case II\ "23#

T � $
e−G0z 9

9 e−iG1z% for Case IV "24#

By these de_nitions\ the following relations can be obtained

w−
n � Rnw

¦
n \ "Rn � rn#\ "25#

w−
ij � Rijw

¦
ij \ 6

i � 1\ 2\ [ [ [ \ n−0 "station number#

j � l "left# or r "right#\
"26#

w−
0 � T0w

−
1l \ "27#

w¦
0 � R0w

−
0 "R0 � r0#\ "28#



C[A[ Tan\ B[ Kan` : International Journal of Solids and Structures 25 "0888# 3920Ð3938 3932

w¦
1l � T0w

¦
0 \ "39#

where\ in eqn "26#\

Ril � ri¦ti"R−0
ir −ri#−0ti\ Rir � TiR"i¦0#lTi[ "30a\b#

Attention should be paid in formulating Ril when waves travel across a cross!sectional change[
Suppose the wave motions in span 0 and span 1 in Fig[ 4 are governed by Case I and Case II\
respectively[ Then\ the incoming and outgoing waves at station 1 are related by

w¦
1r � tIÐIIw

¦
1l ¦rIIÐIw

−
1r \ "31a#

w−
1l � tIIÐIw

−
1r¦rIÐIIw

¦
1l [ "31b#

Since w−
1r � R1rw

¦
1r\ eqns "31a\ b# can be combined to give

w−
1l � R1lw

¦
1l \ where R1l � rIÐII¦tIIÐI "R−0

1l −rIIÐI#−0tIÐII[ "32#

Therefore\ for a geometric discontinuity\ two sets of re~ection and transmission matrices are
needed to formulate R[ Note that\ for geometrically uniform spans\ eqn "32# reduces to eqn "30a#[
Solving the above matrix eqns "25#Ð"39# gives

"R0T0R1lT0−I#w¦
0 � 9[ "33#

For non!trivial solutions\ the natural frequencies are obtained form the characteristic equation

C"v# � Det ð"R0T0R1lT0−I#Ł � 9[ "34#

When the shaft is geometrically uniform and has homogeneous material properties in all the
spans\ the wave motions is governed by a single solution form at a given frequency[ In this case\
since the values of A and B are identical for the spans\ formulation of C"v# is straightforward[
However\ in general\ one needs to consider two or three di}erent wave solutions in the spans\
depending on the frequencies and the properties of the discontinuities[ Hence\ in the derivation of
C"v#\ the re~ection and transmission matrices at each station and the _eld transfer matrix for each
span must be properly determined[

4[ Numerical examples

Three numerical examples are presented to demonstrate the applications of the wave!train
closure principle[ The _rst example is a non!rotating shaft "one meter long# supported by elastic
springs at z � 9\ 9[3 \ 0 m[ A schematic of the system is shown on the top of Fig[ 5[ The non!
dimensional lengths of the two sub!spans are l0 � 9[3:a9 and l1 � 9[5:a9 with a9 � 9[9844 m[ The
spring sti}ness constants are kt � 9[0896 and kr � 002[ Figure 5 plots C"v# as a function of
frequency\ and compares results from the present wave approach with those obtained by the
standard method of separation of variables[ It should be noted that the wave approach always
results in evaluating the determinant of a 1×1 matrix ðsee eqn "34#Ł[ However\ a matrix of size
3n×3n "n � 1 in this example# needs to be considered in the separation of variables method[

As shown in Fig[ 5\ the separation of variables method gives a C"v# which has very large slopes
near the natural frequencies[ This makes the search for the roots of C"v# extremely di.cult since
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Fig[ 5[ Plot of C"v# as a function of frequency\ a � 9[2267\ b � 9\ o � 9\ kt � 9[0896\ kr � 002\ l0 � 9[3:a9\ l1 � 9[5:a9\
a9 � 9[9844 m^ Re ðC"v#Ł "*#\ Im ðC"v#Ł "! ! !#[ DotÐdashed curve "Ð = Ð# shows the result obtained from the standard
method of separation of variables[

the convergence of most root!_nding routines "e[g[\ secant method# depends strongly on the slopes
of the curve near the roots[ Moreover\ though not shown\ the amplitude of oscillation of C"v#
increases exponentially with v in the separation of variables method[ It should be noted that\
although both methods lead to the same roots\ the wave approach produces a di}erent charac!
teristic equation from which the natural frequencies can be searched more easily[ Mead "0883#
also showed that the phase closure principle led to a di}erent characteristic equation for the EulerÐ
Bernoulli beam[ As pointed out by Mace "0873#\ the only source of numerical di.culty in this
wave approach occurs when ~exural components of the whole system contain an insigni_cant
amount of the total mass or ~exibility of the system[ The beam spans then appear physically as
rigid bodies or massless elements[ The wavenumber becomes small and the representation of the
beam displacement in terms of waves becomes unrealistic[ This situation leads to signi_cant
rounding errors in the computations[ In practice\ however\ the contribution of beam mass and
~exibility\ although small\ is enough to overcome these di.culties[

The second example is a rotating shaft with an intermediate elastic support and a rotor mass\
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Fig[ 6[ Plot of C"v# as a function of frequency\ a � 9[2267\ b � 9[94\ o � −9[991\ kt � 9[2703\ kr � 002\ m � 3[6019\
Jm � 75\ l0 � 95:a9\ l1 � 9[3:a9\ l2 � 9[4:a9\ a9 � 9[9844 m^ Re ðC"v#Ł "*#\ Im ðC"v#Ł "! ! !#[

and a compressive axial load is applied[ A schematic of the system is depicted on the top of Fig[
6[ The total length of the shaft is 0[4 m and the non!dimensional lengths of the three sub!spans are
l0 � 9[5:a9\ l1 � 9[3:a9\ and l2 � 9[4:a9 with a9 � 9[9844 m[ The thickness of the rotor disk is
assumed to be much smaller than the span length and the diameter of the disk is 3a9[ The spring
constants are kt � 9[2703 and kr � 002[ It is determined that A"v# × 9 over the entire frequency
range and that the non!zero cuto} frequency vc 3 3[0435[ Thus\ in Fig[ 6\ B"v# ³ 9 "since v ³ vc#
and the wave motion is governed by the solution of Case II[ The re~ection and transmission
matrices rII and tII are used at the boundaries and at each station[ Note that rII for the simply
supported boundaries is

rII � $
−0 9

9 −0%[
In Fig[ 6\ it is seen that small frequency increments Dv may be required to _nd the natural
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Fig[ 7[ Plot of C"v# as a function of frequency\ a � 9[2267\ b � 9[94\ o � 9[991\ s1 �"a0:a1# � 9[7\ s2 �"a1:a2# � 0[1\
l0 � l1 � l2 � 9[4:a9\ a2 � a9 � 9[9844 m^ Re ðC"v#Ł "*#\ Im ðC"v#Ł "! ! !#[

frequencies[ The drastic variations of C"v# are caused by some of the eigenvalues of the sub!spans
being very close to the eigenvalues of the shaft system[

The third example is a rotating shaft with three spans of equal length but di}erent diameters[ A
tensile load is applied to the shaft[ A schematic of the system is depicted on the top of Fig[ 7[ The
total length of the shaft is 0[4 m[ The diameters of the sub!spans are d0 � 9[85a9\ d1 � 0[1a9\ and
d2 � a9 � 9[9844 m[ Figure 8 outlines a computational ~ow chart for C"v# of this problem[ Note
that this computer algorithm can be systematically coded and generalized for the solutions of
rotating shafts with multiple sub!spans and discontinuities[ In this example\ because of the geo!
metric discontinuities in the cross!section\ the forms of the wave solution change from one sub!
span to another and as the frequency is varied[ This is manifested in the {kinks| of Fig[ 7[ The wave
solutions of the sub!spans 0\ 1\ and 2 change from Case IV to Case II at v 3 9[04\ v 3 9[084\ and
v 3 9[10\ respectively[

5[ Summary and conclusions

In this paper\ a systematic approach based on wave propagations is presented to study the free
vibration of a rotating\ multi!span Timoshenko shaft subjected to axial forces[ The complicating
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Fig[ 8[ A numerical algorithm for computing C"v# for the system of example 2[ Superscripts denote station numbers
"or span numbers for A and T#[ Subscripts i\ j\ and k denote the type of wave motions "Case I\ II\ or IV#[ Note that
B × 9 for the given range of frequencies[
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e}ects of axial force\ rotation speed and shear on the wave motions are treated in a uni_ed manner
by examining the characteristics of the wavenumbers[ Including the e}ects of attenuating wave
components\ the wave motions at the discontinuities and in the sub!spans are described exactly by
the wave re~ection and transmission matrices and the _eld transfer matrices expressed in wave
forms\ respectively[ By applying the wave!train closure principle\ characteristic equations of com!
plex rotating shaft systems can be obtained in a straightforward manner[ The proposed wave
approach results in recursive computational algorithms and the numerical e}ort does not involve
computations of matrices with large orders which may occur in the general method of transfer
matrix[ These advantages render the wave methodology suitable for computer coding[
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